Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
पर्याय
ye −x = x + c
yex = x + c
yex = 2x + c
ye−x = 2x + c
उत्तर
The integrating factor of `dy/dx -y = e^x `is ex, then its solution is ye −x = x + c
Explanation
`dy/dx -y = e^x`
Here, I.F. = e–x , Q = ex
∴ Solution of the given equation is
`y ( I.F.) = int Q ( I.F.) dx + c`
∴ `ye ^-x = int e^xe^-x dx+c`
∴ `ye ^-x = int 1dx + c`
∴ ye –x = x + c
APPEARS IN
संबंधित प्रश्न
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy/dx + y` = 3
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
Solve the differential equation
`y (dy)/(dx) + x` = 0