मराठी

Differential Equation D 2 Y D X 2 − 2 D Y D X + Y = 0 , Y ( 0 ) = 1 , Y ′ ( 0 ) = 2 Function Y = Xex + Ex - Mathematics

Advertisements
Advertisements

प्रश्न

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex

बेरीज

उत्तर

We have,

y = xex + ex                .....(1)

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = x e^x + e^x + e^x \]

\[ \Rightarrow \frac{dy}{dx} = x e^x + 2 e^x ...........(2)\]

Differentiating both sides of (2) with respect to x, we get

\[\frac{d^2 y}{d x^2} = x e^x + e^x + 2 e^x \]

\[ \Rightarrow \frac{d^2 y}{d x^2} = x e^x + 3 e^x \]

\[ \Rightarrow \frac{d^2 y}{d x^2} = 2\left( x e^x + 2 e^x \right) - \left( x e^x + e^x \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = 2\frac{dy}{dx} - y ...........\left[\text{Using (1) and (2)}\right]\]

\[ \Rightarrow \frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0\]

\[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0\]

It is the given differential equation.

Thus, y = xex + ex satisfies the given differential equation.

Also, when \[x = 0, y = 0 + 1 = 1,\text{ i.e. }y(0) = 1\]

And, when \[x = 0, y' = 0 + 2 = 2,\text{ i.e. }y'(0) = 2\]

Hence, y = xex + ex is the solution to the given initial value problem.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.04 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.04 | Q 9 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

x cos y dy = (xex log x + ex) dx


tan y dx + sec2 y tan x dy = 0


\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve

`dy/dx + 2/ x y = x^2`


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


The function y = ex is solution  ______ of differential equation


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×