Advertisements
Advertisements
प्रश्न
उत्तर
\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]
\[ \Rightarrow \left( \frac{d^2 y}{d x^2} \right)^\frac{1}{3} = \left( \frac{dy}{dx} \right)^\frac{1}{2} \]
Taking cubes of both the sides, we get
\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( \frac{dy}{dx} \right)^\frac{3}{2} \]
Squaring both the sides, we get
\[ \Rightarrow \left( \frac{d^2 y}{d x^2} \right)^2 = \left( \frac{dy}{dx} \right)^3 \]
\[ \Rightarrow \left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right)^3 = 0\]
In this differential equation, the order of the highest order derivative is 2 and its power is 2. So, it is a differential equation of order 2 and degree 2.
Thus, it is a non-linear differential equation, as its degree is 2, which is greater than 1.
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The solution of `dy/ dx` = 1 is ______
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
`dy/dx = log x`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation
`x + y dy/dx` = x2 + y2