मराठी

Find the Curve for Which the Intercept Cut-off by a Tangent on X-axis is Equal to Four Times the Ordinate of the Point of Contact. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

उत्तर

Let the given curve be y = f(x). Suppose P(x,y) be a point on the curve. Equation of the tangent to the curve at P is \[Y - y = \frac{dy}{dx}(X - x)\] , where (X, Y) is the arbitrary point on the tangent.
Putting Y=0 we get,
\[0 - y = \frac{dy}{dx}(X - x)\]
\[\text{ Therefore, }X - x = - y\frac{dx}{dy}\]
\[ \Rightarrow X = x - y\frac{dx}{dy}\]
\[\text{ Therefore, cut off by the tangent on the }x -\text{ axis }= x - y\frac{dx}{dy}\]
\[\text{ Given, }x - y\frac{dx}{dy} = 4y\]
\[\text{ Therefore, }- y\frac{dx}{dy} = 4y - x\]
\[ \Rightarrow \frac{dx}{dy} = \frac{x - 4y}{y}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x - 4y} . . . . . . . . (1)\]
this is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx} \text{ in }(1) \text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx}{x - 4vx}\]
\[\text{ Therefore, }v + x\frac{dv}{dx} = \frac{v}{1 - 4v}\]
\[ \Rightarrow \frac{xdv}{dx} = \frac{v}{1 - 4v} - v = \frac{4 v^2}{1 - 4v}\]
\[ \Rightarrow \frac{1 - 4v}{v^2}dv = 4\frac{dx}{x}\]
Integrating on both sides we get,
\[\int\frac{1 - 4v}{v^2}dv = 4\int\frac{dx}{x}\]
\[\text{ Therefore, }\int\frac{dv}{v^2} - 4\int\frac{dv}{v} = 4\int\frac{dx}{x}\]
\[ \Rightarrow - \frac{1}{v} - 4 \log v = 4 \log x + \log c\]
\[ \Rightarrow - \frac{1}{v} = 4 log x + log c + 4 log v\]
\[ \Rightarrow 4 \log(xv) + \log c = - \frac{1}{v}\]
putting the value of v we get
\[4 log(x \times \frac{y}{x}) + log c = - \frac{x}{y}\]
\[ \Rightarrow 4 log(y) + log c = - \frac{x}{y}\]
\[ \Rightarrow \log ( y^4 c) = - \frac{x}{y}\]
\[ \Rightarrow y^4 c = e^{- \frac{x}{y}} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 16 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[x\frac{dy}{dx} + y = y^2\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + y` = 3


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve:

(x + y) dy = a2 dx


y dx – x dy + log x dx = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×