Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} = x + 2 \tan^{- 1} x\]
\[ \Rightarrow dy = \left\{ \frac{x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
\[ \Rightarrow dy = \left\{ \frac{1}{2} \times \frac{2x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{1}{2} \times \frac{2x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
\[ \Rightarrow y = \frac{1}{2}\int\frac{2x}{1 + x^2}dx + 2\int\left[ \frac{1}{1 + x^2} \tan^{- 1} x \right] dx\]
\[ \Rightarrow y = \frac{1}{2}\log\left| 1 + x^2 \right| + 2\int\left[ \frac{1}{1 + x^2} \tan^{- 1} x \right] dx\]
\[\text{ Putting }\tan^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]
\[ \therefore y = \frac{1}{2}\log\left| 1 + x^2 \right| + 2\int t dt\]
\[ = \frac{1}{2}\log\left| 1 + x^2 \right| + t^2 + C\]
\[ = \frac{1}{2}\log\left| 1 + x^2 \right| + \left( \tan^{- 1} x \right)^2 + C\]
\[\text{ Hence, }y = \frac{1}{2}\log\left| 1 + x^2 \right| + \left( \tan^{- 1} x \right)^2 +\text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
(ey + 1) cos x dx + ey sin x dy = 0
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve: ydx – xdy = x2ydx.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation
`x + y dy/dx` = x2 + y2