Advertisements
Advertisements
प्रश्न
उत्तर
\[ \frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = 2x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int2x dx\]
\[\log \left| y \right| = x^2 + C . . . . . (1)\]
\[\text{We know that at }x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[0 = 0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[\log \left| y \right| = x^2 \]
\[ \Rightarrow y = e^{x^2} \]
\[\text{ Hence, }y = e^{x^2}\text{ is the required solution }. \]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
(sin x + cos x) dy + (cos x − sin x) dx = 0
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
A population grows at the rate of 5% per year. How long does it take for the population to double?
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
dr + (2r)dθ= 8dθ
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Solve: ydx – xdy = x2ydx.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.