मराठी

D Y D X = 2 X Y , Y ( 0 ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

उत्तर

\[ \frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = 2x dx\]
Integrating both sides, we get 
\[\int\frac{1}{y}dy = \int2x dx\]
\[\log \left| y \right| = x^2 + C . . . . . (1)\]
\[\text{We know that at }x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[0 = 0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get 
\[\log \left| y \right| = x^2 \]
\[ \Rightarrow y = e^{x^2} \]
\[\text{ Hence, }y = e^{x^2}\text{ is the required solution }. \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 45.5 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

A population grows at the rate of 5% per year. How long does it take for the population to double?


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

dr + (2r)dθ= 8dθ


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve: ydx – xdy = x2ydx.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×