Advertisements
Advertisements
प्रश्न
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
उत्तर
We have,
\[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\]
\[\text{ Let }y = vx\]
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[ \therefore v + x\frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2v x^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v^2}{2v} - v\]
\[ \Rightarrow \frac{x dv}{dx} = \frac{1 + v^2 - 2 v^2}{2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{2v}\]
\[ \Rightarrow \frac{2v}{1 - v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{1 - v^2}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow - \log \left| 1 - v^2 \right| = \log \left| x \right| - \log \left| C \right|\]
\[ \Rightarrow \log \left| \frac{1 - v^2}{C} \right| = - \log \left| x \right|\]
\[ \Rightarrow 1 - v^2 = \frac{C}{x}\]
\[ \Rightarrow 1 - \left( \frac{y}{x} \right)^2 = \frac{C}{x}\]
\[ \Rightarrow \frac{x^2 - y^2}{x^2} = \frac{C}{x}\]
\[ \Rightarrow x^2 - y^2 = Cx\]
Thus,
\[x^2 - y^2 = Cx\] is the equation of the rectangular hyperbola.
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
y (1 + ex) dy = (y + 1) ex dx
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The differential equation satisfied by ax2 + by2 = 1 is
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve
`dy/dx + 2/ x y = x^2`
`xy dy/dx = x^2 + 2y^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.