मराठी

X Y D Y D X = ( X + 2 ) ( Y + 2 ) , Y ( 1 ) = − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

उत्तर

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]
\[ \Rightarrow \frac{y}{y + 2}dy = \frac{x + 2}{x}dx\]
\[ \Rightarrow \frac{y + 2 - 2}{y + 2}dy = \frac{x + 2}{x}dx\]
\[ \Rightarrow \left( 1 - \frac{2}{y + 2} \right)dy = \left( 1 + \frac{2}{x} \right)dx\]
Integrating both sides, we get 
\[\int\left( 1 - \frac{2}{y + 2} \right)dy = \int\left( 1 + \frac{2}{x} \right)dx\]
\[ \Rightarrow y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| + C . . . . . (1)\]
We know that at x = 1, y = - 1 . 
Substituting the values of x and y in (1), we get
\[ - 1 - 2\log \left| 1 \right| = 1 + 2\log \left| 1 \right| + C\]
\[ \Rightarrow - 1 = 1 + C\]
\[ \Rightarrow C = - 2\]
Substituting the value of C in (1), we get 
\[y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| - 2\]
\[\text{ Hence, }y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| - 2 \text{ is the required solution .} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 45.7 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \sin^2 y\]

\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`dy/dx + y` = 3


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×