Advertisements
Advertisements
प्रश्न
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
उत्तर
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called particular solution.
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
C' (x) = 2 + 0.15 x ; C(0) = 100
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
y (1 + ex) dy = (y + 1) ex dx
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
(x2 − y2) dx − 2xy dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the differential equation `("d"y)/("d"x) + y` = e−x
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
If `y = log_2 log_2(x)` then `(dy)/(dx)` =