मराठी

The Rate of Increase of Bacteria in a Culture is Proportional to the Number of Bacteria Present and It is Found that the Number Doubles in 6 Hours. Prove that the Ba - Mathematics

Advertisements
Advertisements

प्रश्न

The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.

उत्तर

Let the original count of bacteria be N and the count of bacteria at any time t be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = aP\]
\[ \Rightarrow \frac{dP}{P} = adt\]
\[ \Rightarrow \log \left| P \right| = at + C . . . . . \left( 1 \right)\]
Now, 
\[P = N\text{ at }t = 0\]
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| N \right| = C\]
\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right),\text{ we get }\]
\[\log \left| P \right| = \text{ at }+ \log \left| N \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| =\text{ at }. . . . . \left( 2 \right)\]
According to the question, 
\[\log \left| \frac{2N}{N} \right| = 6a\]
\[ \Rightarrow a = \frac{1}{6}\log \left| 2 \right|\]
\[\text{ Putting }a = \frac{1}{6}\log \left| 2 \right|\text{ in }\left( 2 \right),\text{ we get }\]
\[\log \left| \frac{P}{N} \right| = \frac{t}{6}\log \left| 2 \right| . . . . . \left( 3 \right)\]
\[\text{ Putting }t = 18 \text{ in }\left( 3 \right)\text{ to find the bacteria after 18 hours, we get }\]
\[\log \left| \frac{P}{N} \right| = \frac{18}{6} \log \left| 2 \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = 3\log \left| 2 \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = \log \left| 8 \right|\]
\[ \Rightarrow \frac{P}{N} = 8\]
\[ \Rightarrow P = 8N\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 27 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[x\frac{dy}{dx} + y = y^2\]

(ey + 1) cos x dx + ey sin x dy = 0


(y + xy) dx + (x − xy2) dy = 0


dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


 `dy/dx = log x`


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×