Advertisements
Advertisements
प्रश्न
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
उत्तर
Let the original count of bacteria be N and the count of bacteria at any time t be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = aP\]
\[ \Rightarrow \frac{dP}{P} = adt\]
\[ \Rightarrow \log \left| P \right| = at + C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0\]
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log \left| N \right| = C\]
\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right),\text{ we get }\]
\[\log \left| P \right| = \text{ at }+ \log \left| N \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| =\text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[\log \left| \frac{2N}{N} \right| = 6a\]
\[ \Rightarrow a = \frac{1}{6}\log \left| 2 \right|\]
\[\text{ Putting }a = \frac{1}{6}\log \left| 2 \right|\text{ in }\left( 2 \right),\text{ we get }\]
\[\log \left| \frac{P}{N} \right| = \frac{t}{6}\log \left| 2 \right| . . . . . \left( 3 \right)\]
\[\text{ Putting }t = 18 \text{ in }\left( 3 \right)\text{ to find the bacteria after 18 hours, we get }\]
\[\log \left| \frac{P}{N} \right| = \frac{18}{6} \log \left| 2 \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = 3\log \left| 2 \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = \log \left| 8 \right|\]
\[ \Rightarrow \frac{P}{N} = 8\]
\[ \Rightarrow P = 8N\]
APPEARS IN
संबंधित प्रश्न
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that y = AeBx is a solution of the differential equation
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(ey + 1) cos x dx + ey sin x dy = 0
(y + xy) dx + (x − xy2) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
`dy/dx = log x`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?