Advertisements
Advertisements
प्रश्न
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
उत्तर
We have,
\[y = \sin x + \cos x..............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = \cos x - \sin x.............(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = - \sin x - \cos x\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - \left( \sin x + \cos x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - y .............\left[\text{Using (1)}\right]\]
⇒ \[\frac{d^2 y}{d x^2} + y = 0\]
It is the given differential equation.
Therefore, \[y = \sin x + \cos x\] satisfies the given differential equation.
Also, when \[x = 0; y = \sin 0 + \cos 0 = 1,\text{ i.e. }y(0) = 1\]
And, when \[x = 0; y' = \cos 0 - \sin 0 = 1,\text{ i.e. }y'(0) = 1\]
Hence, \[y = \sin x + \cos x\] is the solution to the given initial value problem.
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve
`dy/dx + 2/ x y = x^2`
Solve: `("d"y)/("d"x) + 2/xy` = x2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx" + 2xy` = y
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.