मराठी

X 2 D Y D X = X 2 + X Y + Y 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]

उत्तर

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + x^2 v + v^2 x^2}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 1 + v + v^2 \]
\[ \Rightarrow x\frac{dv}{dx} = \left( 1 + v^2 \right)\]
\[ \Rightarrow \frac{1}{1 + v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \tan^{- 1} v = \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \log \left| x \right| + C\]
\[\text{ Hence, }\tan^{- 1} \left( \frac{y}{x} \right) = \log \left| x \right| + C\text{ is the required solution .}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 11 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

(1 − x2) dy + xy dx = xy2 dx


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Solve the following differential equation.

`dy/dx = x^2 y + y`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve:

(x + y) dy = a2 dx


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×