Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{x}{2y + x}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx \text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x}{2vx + x}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1}{2v + 1}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{2v + 1} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 2 v^2 - v}{2v + 1}\]
\[ \Rightarrow \frac{2v + 1}{1 - 2 v^2 - v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v + 1}{1 - 2 v^2 - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{2 v^2 + v - 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{2v\left( v + 1 \right) - 1\left( v + 1 \right)}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)}dv = - \int\frac{1}{x}dx . . . . . (1)\]
Solving left hand side integral of (1), we get
Using partial fraction,
\[\text{ Let }\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)} = \frac{A}{\left( 2v - 1 \right)} + \frac{B}{\left( v + 1 \right)}\]
\[ \therefore A + 2B = 2 . . . . . (2) \]
And A - B = 1 . . . . . (3)
Solving (2) and (3), we get
\[A = \frac{4}{3}\text{ and }B = \frac{1}{3}\]
\[ \therefore \int\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)}dv = \frac{4}{3}\int\frac{1}{2v - 1}dv + \frac{1}{3}\int\frac{1}{v + 1}dv\]
\[ = \frac{4}{3 \times 2}\log \left| 2v - 1 \right| + \frac{1}{3}\log \left| v + 1 \right| + \log C \]
From (1), we get
\[ \frac{2}{3}\log \left| 2v - 1 \right| + \frac{1}{3}\left| v + 1 \right| + \log C = - \log \left| x \right| + \log C_1 \]
\[ \Rightarrow \log \left\{ \left| \left( 2v - 1 \right)^2 \right|\left| v + 1 \right| \right\} = - 3\log\left| x \right| + \log C_2 \]
\[ \Rightarrow \log \left\{ \left| \left( 2v - 1 \right)^2 \right|\left| v + 1 \right| \right\} = \log \left| \frac{{C_2}^3}{x^3} \right|\]
\[ \Rightarrow \left( 2v - 1 \right)^2 \left( v + 1 \right) = \frac{{C_2}^3}{x^3}\]
\[\text{Putting }v = \frac{y}{x},\text{we get }\]
\[ \Rightarrow \left( \frac{2y - x}{x} \right)^2 \left( \frac{y + x}{x} \right) = \frac{{C_2}^3}{x^3}\]
\[ \Rightarrow \left( x + y \right) \left( 2y - x \right)^2 = k\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
2xy dx + (x2 + 2y2) dy = 0
(x + 2y) dx − (2x − y) dy = 0
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
The solution of `dy/ dx` = 1 is ______
Solve
`dy/dx + 2/ x y = x^2`
y2 dx + (xy + x2)dy = 0
y dx – x dy + log x dx = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: