English

D Y D X = X 2 Y + X - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solution

We have,
\[\frac{dy}{dx} = \frac{x}{2y + x}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx \text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x}{2vx + x}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1}{2v + 1}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{2v + 1} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 2 v^2 - v}{2v + 1}\]
\[ \Rightarrow \frac{2v + 1}{1 - 2 v^2 - v}dv = \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int\frac{2v + 1}{1 - 2 v^2 - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{2 v^2 + v - 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{2v\left( v + 1 \right) - 1\left( v + 1 \right)}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)}dv = - \int\frac{1}{x}dx . . . . . (1)\]
Solving left hand side integral of (1), we get
Using partial fraction,
\[\text{ Let }\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)} = \frac{A}{\left( 2v - 1 \right)} + \frac{B}{\left( v + 1 \right)}\]
\[ \therefore A + 2B = 2 . . . . . (2) \]
And A - B = 1 . . . . . (3) 
Solving (2) and (3), we get 
\[A = \frac{4}{3}\text{ and }B = \frac{1}{3}\]
\[ \therefore \int\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)}dv = \frac{4}{3}\int\frac{1}{2v - 1}dv + \frac{1}{3}\int\frac{1}{v + 1}dv\]
\[ = \frac{4}{3 \times 2}\log \left| 2v - 1 \right| + \frac{1}{3}\log \left| v + 1 \right| + \log C \]
From (1), we get
\[ \frac{2}{3}\log \left| 2v - 1 \right| + \frac{1}{3}\left| v + 1 \right| + \log C = - \log \left| x \right| + \log C_1 \]
\[ \Rightarrow \log \left\{ \left| \left( 2v - 1 \right)^2 \right|\left| v + 1 \right| \right\} = - 3\log\left| x \right| + \log C_2 \]
\[ \Rightarrow \log \left\{ \left| \left( 2v - 1 \right)^2 \right|\left| v + 1 \right| \right\} = \log \left| \frac{{C_2}^3}{x^3} \right|\]
\[ \Rightarrow \left( 2v - 1 \right)^2 \left( v + 1 \right) = \frac{{C_2}^3}{x^3}\]
\[\text{Putting }v = \frac{y}{x},\text{we get }\]
\[ \Rightarrow \left( \frac{2y - x}{x} \right)^2 \left( \frac{y + x}{x} \right) = \frac{{C_2}^3}{x^3}\]
\[ \Rightarrow \left( x + y \right) \left( 2y - x \right)^2 = k\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 15 | Page 83

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[5\frac{dy}{dx} = e^x y^4\]

\[x\frac{dy}{dx} + y = y^2\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

(y + xy) dx + (x − xy2) dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

(y2 − 2xy) dx = (x2 − 2xy) dy


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Define a differential equation.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation:

`e^(dy/dx) = x`


Solve:

(x + y) dy = a2 dx


 `dy/dx = log x`


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×