Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{x}{2y + x}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx \text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x}{2vx + x}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1}{2v + 1}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{2v + 1} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 2 v^2 - v}{2v + 1}\]
\[ \Rightarrow \frac{2v + 1}{1 - 2 v^2 - v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v + 1}{1 - 2 v^2 - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{2 v^2 + v - 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{2v\left( v + 1 \right) - 1\left( v + 1 \right)}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)}dv = - \int\frac{1}{x}dx . . . . . (1)\]
Solving left hand side integral of (1), we get
Using partial fraction,
\[\text{ Let }\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)} = \frac{A}{\left( 2v - 1 \right)} + \frac{B}{\left( v + 1 \right)}\]
\[ \therefore A + 2B = 2 . . . . . (2) \]
And A - B = 1 . . . . . (3)
Solving (2) and (3), we get
\[A = \frac{4}{3}\text{ and }B = \frac{1}{3}\]
\[ \therefore \int\frac{2v + 1}{\left( 2v - 1 \right)\left( v + 1 \right)}dv = \frac{4}{3}\int\frac{1}{2v - 1}dv + \frac{1}{3}\int\frac{1}{v + 1}dv\]
\[ = \frac{4}{3 \times 2}\log \left| 2v - 1 \right| + \frac{1}{3}\log \left| v + 1 \right| + \log C \]
From (1), we get
\[ \frac{2}{3}\log \left| 2v - 1 \right| + \frac{1}{3}\left| v + 1 \right| + \log C = - \log \left| x \right| + \log C_1 \]
\[ \Rightarrow \log \left\{ \left| \left( 2v - 1 \right)^2 \right|\left| v + 1 \right| \right\} = - 3\log\left| x \right| + \log C_2 \]
\[ \Rightarrow \log \left\{ \left| \left( 2v - 1 \right)^2 \right|\left| v + 1 \right| \right\} = \log \left| \frac{{C_2}^3}{x^3} \right|\]
\[ \Rightarrow \left( 2v - 1 \right)^2 \left( v + 1 \right) = \frac{{C_2}^3}{x^3}\]
\[\text{Putting }v = \frac{y}{x},\text{we get }\]
\[ \Rightarrow \left( \frac{2y - x}{x} \right)^2 \left( \frac{y + x}{x} \right) = \frac{{C_2}^3}{x^3}\]
\[ \Rightarrow \left( x + y \right) \left( 2y - x \right)^2 = k\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
y ex/y dx = (xex/y + y) dy
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Define a differential equation.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve
`dy/dx + 2/ x y = x^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
Solve the differential equation
`y (dy)/(dx) + x` = 0