Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v^2 x^2 - x^2}{2v x^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v^2 - 1}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{\left( v^2 + 1 \right)}{2v}\]
\[ \Rightarrow \frac{2v}{v^2 + 1}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[\log \left| v^2 + 1 \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| = \log \frac{C}{\left| x \right|}\]
\[ \Rightarrow v^2 + 1 = \frac{C}{x}\]
\[\text{ Putting }v = \frac{y}{x}, \text{ we get }\]
\[ \Rightarrow \left( \frac{y}{x} \right)^2 + 1 = \frac{C}{x}\]
\[ \Rightarrow y^2 + x^2 = Cx \]
\[\text{ Hence, }x^2 + y^2 = Cx\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(sin x + cos x) dy + (cos x − sin x) dx = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
(x + y) (dx − dy) = dx + dy
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`(x + y) dy/dx = 1`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the following differential equation y2dx + (xy + x2) dy = 0
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is