Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v^2 x^2 - x^2}{2v x^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v^2 - 1}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{\left( v^2 + 1 \right)}{2v}\]
\[ \Rightarrow \frac{2v}{v^2 + 1}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[\log \left| v^2 + 1 \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| = \log \frac{C}{\left| x \right|}\]
\[ \Rightarrow v^2 + 1 = \frac{C}{x}\]
\[\text{ Putting }v = \frac{y}{x}, \text{ we get }\]
\[ \Rightarrow \left( \frac{y}{x} \right)^2 + 1 = \frac{C}{x}\]
\[ \Rightarrow y^2 + x^2 = Cx \]
\[\text{ Hence, }x^2 + y^2 = Cx\text{ is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
x cos y dy = (xex log x + ex) dx
xy dy = (y − 1) (x + 1) dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`