Advertisements
Advertisements
Question
Solution
We have,
\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x^2 + 1}\]
\[ \Rightarrow dy = \left( \frac{1}{x^2 + 1} \right)dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\left( \frac{1}{x^2 + 1} \right)dx\]
\[ \Rightarrow y = \tan^{- 1} x + C\]
\[\text{ So,} y = \tan^{- 1} x + \text{ C is defined for all }x \in R . \]
\[\text{ Hence, }y = \tan^{- 1} x + \text{ C, where }x \in R, \text{ is the solution to the given differential equation }.\]
APPEARS IN
RELATED QUESTIONS
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
y2 dx + (x2 − xy + y2) dy = 0
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the differential equation:
`e^(dy/dx) = x`
Solve
`dy/dx + 2/ x y = x^2`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is