Advertisements
Advertisements
Question
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
Solution
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{\tan x}y = \frac{2x\tan x + x^2}{\tan x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \cot x \right)y = 2x + x^2 \cot x\]
This is a linear differential equation of the form \[\frac{dy}{dx} + Py = Q\]
Integrating factor, I.F. = \[e^{\int Pdx} = e^{\int\cot xdx} = e^{log\sin x} = \sin x\]
The solution of the given differential equation is given by
\[y \times \left( I . F . \right) = \int Q \times \left( I . F . \right)dx + C\]
\[ \Rightarrow y \times \sin x = \int\left( 2x + x^2 \cot x \right)\sin xdx + C\]
\[ \Rightarrow y\sin x = \int2x\sin xd x + \int x^2 \cos xdx + C\]
\[ \Rightarrow y\sin x = \int2x\sin xdx + \left[ x^2 \int\cos xdx - \int\left( \frac{d}{dx} x^2 \times \int\cos xdx \right)dx \right] + C\]
\[\Rightarrow y\sin x = \int2x\sin xdx + x^2 \sin x - \int2x\sin xdx + C\]
\[ \Rightarrow y\sin x = x^2 \sin x + C\]
\[ \Rightarrow y = x^2 + \text{ cosec }x \times C . . . . . \left( 1 \right)\]
It is given that, y = 0 when \[x = \frac{\pi}{2}\]
\[\therefore 0 = \left( \frac{\pi}{2} \right)^2 +\text{ cosec }\frac{\pi}{2} \times C\]
\[ \Rightarrow C = - \frac{\pi^2}{4}\]
Putting \[C = - \frac{\pi^2}{4}\] in (1), we get
APPEARS IN
RELATED QUESTIONS
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
C' (x) = 2 + 0.15 x ; C(0) = 100
(1 − x2) dy + xy dx = xy2 dx
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve
`dy/dx + 2/ x y = x^2`
`dy/dx = log x`
Solve the differential equation xdx + 2ydy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.