English

Solution of ddxdydx=y+xtan yx is sin(yx) = cx - Mathematics

Advertisements
Advertisements

Question

Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

Explanation:

The given differential equation is `x("d"y)/("d"x) = y + x tan (y/x)`

`x ("d"y)/("d"x) = -x tan (y/x)` = y

⇒ `("d"y)/("d"x) - tan (y/x) = y/x`

⇒ `("d"y)/("d"x) = y/x + tan (y/x)`

Put y = vx

⇒ `("d"y)/("d"x) = "v" + x "dv"/"dx"`

⇒ `"v" + x * "dv"/"dx" = "vx"/x + tan ("vx"/x)`

⇒ `"v" + x "dv"/"dx" = "v" + tan "v"`

⇒ `x "dv"/"dx" = tan "v"`

⇒ `"dv"/tan"v" = ("d"x)/x`

⇒ `cot "v" "dv" = ("d"x)/x`

Integrating both sides, we get

`int cot "v" "dv" = int ("d"x)/x`

⇒ `log sin "v" = log x + log "c"`

⇒ `log sin "v" - log x = log "c"`

⇒ `log sin  y/x = log x"c"`

∴ `sin  y/x` = xc

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 203]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 77.(x) | Page 203

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\sqrt{a + x} dy + x\ dx = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

(ey + 1) cos x dx + ey sin x dy = 0


xy dy = (y − 1) (x + 1) dx


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

The solution of `dy/ dx` = 1 is ______


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×