English

D Y D X = 1 + X + Y 2 + X Y 2 When Y = 0, X = 0 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0
Sum

Solution

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\]
\[\Rightarrow \frac{dy}{dx} = 1 + x + y^2 \left( 1 + x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + x \right)\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{\left( 1 + y^2 \right)} = \left( 1 + x \right)dx\]
\[ \Rightarrow \int\frac{dy}{\left( 1 + y^2 \right)} = \int\left( 1 + x \right)dx\]
\[ \Rightarrow \tan^{- 1} y = x + \frac{x^2}{2} + C . . . . . \left( 1 \right)\]
\[\text{ Now, } \tan^{- 1} 0 = 0 + 0 + C ..........\left[\because y = 0, x = 0 \right]\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[ \tan^{- 1} y = x + \frac{x^2}{2}\]
\[ \Rightarrow y = \tan\left( x + \frac{x^2}{2} \right)\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 45.8 | Page 56

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \log x\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Solve the differential equation

`y (dy)/(dx) + x` = 0


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×