Advertisements
Advertisements
Question
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Solution
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
∴ `("d"y)/("d"x) = 1 + y/x - (y/x)^2` .....(i)
Put `y/x` = t .....(ii)
∴ y = tx
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "t" + x ("dt")/("d"x)` .....(iii)
Substituting (ii) and (iii) in (i), we get
`"t" + x "dt"/("d"x)` = 1 + t − t2
∴ `x "dt"/("d"x)` = 1 − t2
∴ `"dt"/(1 - "t"^2) = ("d"x)/x`
Integrating on both sides, we get
`int "dt"/(1 - "t"^2) = int ("d"x)/x`
∴ `1/2 log|(1 + t)/(1 - t)|` = log |x| + log |c1|
∴ `log |(1 + y/x)/(1 - y/x)|` = 2log |x| + 2log |c1|
∴ `log|(x + y)/(x - y)|` = log |x2| + log |c12|
∴ `log|(x + y)/(x - y)|` = log |c1x2|
∴ `(x + y)/(x - y)` = c12x2
∴ `(x + y)/(x - y)` = cx2, where c = c12
RELATED QUESTIONS
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that y = AeBx is a solution of the differential equation
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
C' (x) = 2 + 0.15 x ; C(0) = 100
(1 − x2) dy + xy dx = xy2 dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
3x2 dy = (3xy + y2) dx
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation y1 y3 = y22 is
The differential equation satisfied by ax2 + by2 = 1 is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
x2y dx – (x3 + y3) dy = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation y2dx + (xy + x2) dy = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
Solve the differential equation
`x + y dy/dx` = x2 + y2