Advertisements
Advertisements
Question
Solution
\[\frac{d^4 y}{d x^4} = \left[ c + \left( \frac{dy}{dx} \right)^2 \right]^\frac{3}{2} \]
Squaring both sides, we get
\[ \Rightarrow \left( \frac{d^4 y}{d x^4} \right)^2 = \left[ c + \left( \frac{dy}{dx} \right)^2 \right]^3 \]
\[ \Rightarrow \left( \frac{d^4 y}{d x^4} \right)^2 = c^3 + 3 c^2 \left( \frac{dy}{dx} \right)^2 + 3c \left( \frac{dy}{dx} \right)^4 + \left( \frac{dy}{dx} \right)^6\]
In this differential equation, the order of the highest order derivative is 4 and its power is 2. So, it is a differential equation of order 4 and degree 2.
Thus, it is a non-linear differential equation, as its degree is 2, which is greater than 1.
APPEARS IN
RELATED QUESTIONS
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
(1 − x2) dy + xy dx = xy2 dx
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
y ex/y dx = (xex/y + y) dy
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve the differential equation:
`e^(dy/dx) = x`
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Solve the differential equation `"dy"/"dx" + 2xy` = y
If `y = log_2 log_2(x)` then `(dy)/(dx)` =