English

D 4 Y D X 4 = { C + ( D Y D X ) 2 } 3 / 2 - Mathematics

Advertisements
Advertisements

Question

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Solution

\[\frac{d^4 y}{d x^4} = \left[ c + \left( \frac{dy}{dx} \right)^2 \right]^\frac{3}{2} \]
Squaring both sides, we get
\[ \Rightarrow \left( \frac{d^4 y}{d x^4} \right)^2 = \left[ c + \left( \frac{dy}{dx} \right)^2 \right]^3 \]
\[ \Rightarrow \left( \frac{d^4 y}{d x^4} \right)^2 = c^3 + 3 c^2 \left( \frac{dy}{dx} \right)^2 + 3c \left( \frac{dy}{dx} \right)^4 + \left( \frac{dy}{dx} \right)^6\]
In this differential equation, the order of the highest order derivative is 4 and its power is 2. So, it is a differential equation of order 4 and degree 2.
Thus, it is a non-linear differential equation, as its degree is 2, which is greater than 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.01 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.01 | Q 7 | Page 5

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[5\frac{dy}{dx} = e^x y^4\]

(1 − x2) dy + xy dx = xy2 dx


\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

y ex/y dx = (xex/y + y) dy


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the differential equation:

`e^(dy/dx) = x`


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×