Advertisements
Advertisements
Question
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Solution
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
\[ \Rightarrow y\sqrt{1 + x^2}dy = - x\sqrt{1 + y^2}dx\]
\[ \Rightarrow \frac{y}{\sqrt{1 + y^2}}dy = \frac{- x}{\sqrt{1 + x^2}}dx\]
\[ \Rightarrow \int\frac{y}{\sqrt{1 + y^2}}dy = - \int\frac{x}{\sqrt{1 + x^2}}dx\]
\[\text{Let }1 + y^2 = t^2\text{ and }1 + x^2 = p^2 \]
\[ \Rightarrow 2ydy = 2tdt\text{ and }2xdx = 2pdp\]
\[ \Rightarrow ydy = tdt\text{ and }xdx = pdp\]
Substituting in above equation, we get
\[ \Rightarrow \int dt = - \int dp\]
\[ \Rightarrow t = - p + C\]
\[ \Rightarrow \sqrt{1 + x^2} + \sqrt{1 + y^2} = C\]
APPEARS IN
RELATED QUESTIONS
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
(1 + x2) dy = xy dx
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
2xy dx + (x2 + 2y2) dy = 0
3x2 dy = (3xy + y2) dx
(x + 2y) dx − (2x − y) dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
y2 dx + (x2 − xy + y2) dy = 0
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
The function y = ex is solution ______ of differential equation
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Solve the differential equation
`x + y dy/dx` = x2 + y2