English

(1 + X2) Dy = Xy Dx - Mathematics

Advertisements
Advertisements

Question

(1 + x2) dy = xy dx

Sum

Solution

We have,
\[\left( 1 + x^2 \right) dy = xy\ dx\]
\[ \Rightarrow \frac{1}{y}dy = \frac{x}{1 + x^2}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{x}{1 + x^2}dx\]
\[\text{ Substituting }1 + x^2 = t,\text{ we get }\]
\[2x\ dx = dt\]
\[ \therefore \int\frac{1}{y}dy = \frac{1}{2}\int\frac{1}{t}dt\]
\[ \Rightarrow \log\left| y \right| = \frac{1}{2}\log\left| t \right| + \log C \]
\[ \Rightarrow \log\left| y \right| = \frac{1}{2}\log\left| 1 + x^2 \right| + \log C .........\left(\because t = 1 + x^2\right)\]
\[ \Rightarrow \log\left| y \right| = \log\left[ C\sqrt{1 + x^2} \right]\]
\[ \Rightarrow y = C\sqrt{1 + x^2}\]
\[\text{ Hence, }y = C\sqrt{1 + x^2}\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 2 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

x cos2 y  dx = y cos2 x dy


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

tan y dx + sec2 y tan x dy = 0


\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


A population grows at the rate of 5% per year. How long does it take for the population to double?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


The solution of `dy/dx + x^2/y^2 = 0` is ______


x2y dx – (x3 + y3) dy = 0


 `dy/dx = log x`


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×