Advertisements
Advertisements
प्रश्न
(1 + x2) dy = xy dx
उत्तर
We have,
\[\left( 1 + x^2 \right) dy = xy\ dx\]
\[ \Rightarrow \frac{1}{y}dy = \frac{x}{1 + x^2}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{x}{1 + x^2}dx\]
\[\text{ Substituting }1 + x^2 = t,\text{ we get }\]
\[2x\ dx = dt\]
\[ \therefore \int\frac{1}{y}dy = \frac{1}{2}\int\frac{1}{t}dt\]
\[ \Rightarrow \log\left| y \right| = \frac{1}{2}\log\left| t \right| + \log C \]
\[ \Rightarrow \log\left| y \right| = \frac{1}{2}\log\left| 1 + x^2 \right| + \log C .........\left(\because t = 1 + x^2\right)\]
\[ \Rightarrow \log\left| y \right| = \log\left[ C\sqrt{1 + x^2} \right]\]
\[ \Rightarrow y = C\sqrt{1 + x^2}\]
\[\text{ Hence, }y = C\sqrt{1 + x^2}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
x cos y dy = (xex log x + ex) dx
(1 − x2) dy + xy dx = xy2 dx
y (1 + ex) dy = (y + 1) ex dx
(y + xy) dx + (x − xy2) dy = 0
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx