हिंदी

Solve the following differential equation. (x2 − y2 ) dx + 2xy dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0

योग

उत्तर

(x2 − y2 ) dx + 2xy dy = 0

∴ 2xy dy = (y2 - x2) dx

∴ `dy/dx = (y^2 - x^2)/(2xy) ......(i)`

Put y = tx  ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t +x dt/dx  ...(iii)`

Substituting (ii) and (iii) in (i), we get

`t + x dt/dx = (t^2 x^2-x^2)/(2tx^2)`

∴ `x dt/dx = (t^2 - 1)/(2t )- t = (-(1+t^2))/(2t)`

∴ `2t/(1+t^2) dt = - dx/x`

Integrating on both sides, we get

`int 2t/(1+t^2) dt = - int dx/x`

∴ log |1 + t2| = -log |x| + log |c|

∴`log | 1+y^2/x^2| = log |c/x|`

∴ `(x^2 + y^2)/x^2 = c/x`

∴  x2 + y2 = cx

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.4 [पृष्ठ १६७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.4 | Q 1.5 | पृष्ठ १६७

संबंधित प्रश्न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

x cos2 y  dx = y cos2 x dy


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


x2y dx – (x3 + y3) dy = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×