Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
उत्तर
(x2 − y2 ) dx + 2xy dy = 0
∴ 2xy dy = (y2 - x2) dx
∴ `dy/dx = (y^2 - x^2)/(2xy) ......(i)`
Put y = tx ...(ii)
Differentiating w.r.t. x, we get
`dy/dx = t +x dt/dx ...(iii)`
Substituting (ii) and (iii) in (i), we get
`t + x dt/dx = (t^2 x^2-x^2)/(2tx^2)`
∴ `x dt/dx = (t^2 - 1)/(2t )- t = (-(1+t^2))/(2t)`
∴ `2t/(1+t^2) dt = - dx/x`
Integrating on both sides, we get
`int 2t/(1+t^2) dt = - int dx/x`
∴ log |1 + t2| = -log |x| + log |c|
∴`log | 1+y^2/x^2| = log |c/x|`
∴ `(x^2 + y^2)/x^2 = c/x`
∴ x2 + y2 = cx
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
x cos2 y dx = y cos2 x dy
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
x2y dx – (x3 + y3) dy = 0
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______