Advertisements
Advertisements
प्रश्न
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
उत्तर
Let at any time the bacteria count be N .
\[\text{ Given: }\]
\[\frac{dN}{dt}\alpha \text{ N }\]
\[ \Rightarrow \frac{dN}{dt} = \lambda N\]
\[ \Rightarrow \frac{1}{N}dN = \lambda dt\]
Integrating both sides, we get
\[\int\frac{1}{N}dN = \int\lambda dt\]
\[ \Rightarrow \ln N = \lambda t + \ln C . . . (1)\]
Given:
\[\text{ at }t = 0, N = 100000\]
\[\text{therefore, }\ln C = \ln 100000\]
Putting the value in (1) we get,
\[\ln N = \lambda t + \ln 100000\]
Also, at t = 2
\[N = 110000\]
Putting the values of t and N in (1), we get
\[\ln 110000 = 2\lambda + \ln 100000\]
\[ \Rightarrow \frac{1}{2}\ln \frac{11}{10} = \lambda\]
\[\text{ Substituting the values of }\ln C \text{ and }\lambda \text{ in (1), we get }\]
\[\ln N = \frac{1}{2}\ln \left( \frac{11}{10} \right)t + \ln 100000 . . . . (2)\]
\[\text{ When }N = 200000, \text{ let }t = T . \]
Substituting these values in (2), we get
\[\ln 200000 = \frac{T}{2}\ln \left( \frac{11}{10} \right) + \ln 100000\]
\[ \Rightarrow \ln 2 = \frac{T}{2}\ln \frac{11}{10}\]
\[ \Rightarrow T = 2\frac{\ln 2}{\ln \frac{11}{10}}\]
\[\text{ Therefore, in }2\frac{\ln 2}{\ln \frac{11}{10}}\text{ hours, the count will reach }200000 .\]
APPEARS IN
संबंधित प्रश्न
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
C' (x) = 2 + 0.15 x ; C(0) = 100
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve
`dy/dx + 2/ x y = x^2`
x2y dx – (x3 + y3) dy = 0
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.