हिंदी

Solve the following differential equation sec2 x tan y dx + sec2 y tan x dy = 0 Solution: sec2 x tan y dx + sec2 y tan x dy = 0 ∴ sec2xtanx dx+□ = 0 Integrating, we get □+∫sec2ytany dy = log c Each - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.

रिक्त स्थान भरें
योग

उत्तर

sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x` + `(sec^2y)/tany  "d"y` = 0

Integrating, we get

`int (sec^2x)/tanx  "d"x` + `int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

log |tan x| + `log |tan y|` = log c

∴ log |tan x . tan y| = log c

tan x . tan y = c

This is the general solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.8: Differential Equation and Applications - Q.6

संबंधित प्रश्न

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\sqrt{1 - x^4} dy = x\ dx\]

(1 + x2) dy = xy dx


x cos y dy = (xex log x + ex) dx


(1 − x2) dy + xy dx = xy2 dx


dy + (x + 1) (y + 1) dx = 0


Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


(x + 2y) dx − (2x − y) dy = 0


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve the differential equation xdx + 2ydy = 0


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×