Advertisements
Advertisements
प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
उत्तर
We have,
\[y = A \cos x + B \sin x............(1)\]
Differentiating both sides of equation (1) with respect to x, we get
\[\frac{dy}{dx} = - A \sin x + B \cos x...........(2)\]
Differentiating both sides of equation (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = - A \cos x - B \sin x\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - \left( A \cos x + B \sin x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - y ...........\left[\text{Using equation }\left( 1 \right) \right]\]
⇒ \[\frac{d^2 y}{d x^2} + y = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve: ydx – xdy = x2ydx.