हिंदी

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in

विकल्प

  • 4 hours

  • 6 hours

  • 8 hours

  • 10 hours

MCQ

उत्तर

6 hours

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.6: Differential Equations - MCQ

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

xy (y + 1) dy = (x2 + 1) dx


\[5\frac{dy}{dx} = e^x y^4\]

(ey + 1) cos x dx + ey sin x dy = 0


x cos2 y  dx = y cos2 x dy


\[x\frac{dy}{dx} + \cot y = 0\]

tan y dx + sec2 y tan x dy = 0


\[\frac{dy}{dx} = 1 - x + y - xy\]

(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

(x2 − y2) dx − 2xy dy = 0


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

(y2 − 2xy) dx = (x2 − 2xy) dy


2xy dx + (x2 + 2y2) dy = 0


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


The solution of `dy/dx + x^2/y^2 = 0` is ______


 `dy/dx = log x`


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


The function y = ex is solution  ______ of differential equation


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×