Advertisements
Advertisements
प्रश्न
(x2 − y2) dx − 2xy dy = 0
उत्तर
We have,
\[\left( x^2 - y^2 \right) dx - 2xy dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - \left( vx \right)^2}{2x\left( vx \right)}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{x^2 - v^2 x^2}{2v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 - v^2}{2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 3 v^2}{2v}\]
\[ \Rightarrow \frac{2v}{1 - 3 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{1 - 3 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\int\frac{- 6v}{1 - 3 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\log \left| 1 - 3 v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 1 - 3 v^2 \right| = - 3\log \left| Cx \right|\]
\[ \Rightarrow \log \left| 1 - 3 v^2 \right| = \log \left| \frac{1}{\left( Cx \right)^3} \right|\]
\[ \Rightarrow 1 - 3 v^2 = \frac{1}{\left( Cx \right)^3}\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[1 - 3 \left( \frac{y}{x} \right)^2 = \frac{1}{\left( Cx \right)^3}\]
\[ \Rightarrow \frac{x^2 - 3 y^2}{x^2} = \frac{1}{C^3 x^3}\]
\[ \Rightarrow x\left( x^2 - 3 y^2 \right) = \frac{1}{C^3}\]
\[ \Rightarrow x\left( x^2 - 3 y^2 \right) = K ...........\left(\text{where, }K = \frac{1}{C^3} \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that y = cx + 2c2 is a solution of the differential equation
(1 + x2) dy = xy dx
xy dy = (y − 1) (x + 1) dx
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Define a differential equation.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Form the differential equation from the relation x2 + 4y2 = 4b2
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the differential equation:
dr = a r dθ − θ dr
Solve:
(x + y) dy = a2 dx
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Solve: ydx – xdy = x2ydx.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?