Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{x + y}{x - y}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x + vx}{x - vx}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + v}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v}{1 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v^2}{1 - v}\]
\[\frac{1 - v}{1 + v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 - v}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1 + v^2}dv - \int\frac{v}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1 + v^2}dv - \frac{1}{2}\int\frac{2v}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \tan^{- 1} v - \frac{1}{2}\log \left| 1 + v^2 \right| = \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) - \frac{1}{2}\log \left| 1 + \frac{y^2}{x^2} \right| = \log \left| x \right| + C\]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \frac{1}{2}\log \left| 1 + \frac{y^2}{x^2} \right| + \log \left| x \right| + C \]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \frac{1}{2}\log \left| \frac{x^2 + y^2}{x^2} \right| + \log \left| x \right| + C \]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \frac{1}{2}\log \left| x^2 + y^2 \right| - \frac{1}{2}\log \left| x^2 \right| + \log \left| x \right| + C \]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \frac{1}{2}\log \left| x^2 + y^2 \right| - \log \left| x \right| + \log \left| x \right| + C \]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \frac{1}{2}\log \left| x^2 + y^2 \right| + C \]
\[\text{ Hence, }\tan^{- 1} \left( \frac{y}{x} \right) = \frac{1}{2}\log \left| x^2 + y^2 \right| + C\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation y1 y3 = y22 is
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
y2 dx + (xy + x2)dy = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.