Advertisements
Advertisements
प्रश्न
Solve the following differential equation y2dx + (xy + x2) dy = 0
उत्तर
y2dx + (xy + x2) dy = 0
∴ `y^2 + (xy + x^2) ("d"y)/("d"x)` = 0
∴ `(xy + x^2) ("d"y)/("d"x)` = − y2
∴ `("d"y)/("d"x) = (-y^2)/(xy + x^2)` .....(i)
Put y = tx ......(ii)
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "t" + x "dt"/("d"x)` ......(iii)
Substituting (ii) and (iii) in (i), we get
`"t" + x "dt"/("d"x) = (-"t"^2x^2)/(x("t"x) + x^2)`
∴ `"t" + x "dt"/("d"x) = (-"t"^2x^2)/(x^2("t" + 1))`
∴ `"t" + x "dt"/("d"x) = (-"t"^2)/(1 + "t")`
∴ `x "dt"/("d"x) = (-"t"^2)/(1 + "t") - "t"`
= `(-"t"^2 - "t" - "t"^2)/(1 + "t")`
= `(-2"t"^2 - "t")/(1 + "t")`
∴ `(1 + "t")/("t"^2 + "t") "dt" = - ("d"x)/x`
Integrating on both sides, we get
`int (1 + "t")/(2"t"^2 + "t") "dt" = - int ("d"x)/x`
∴ `int ((2"t" + 1) - "t")/("t"(21"t" + 1)) "dt" = -int ("d"x)/x`
∴ `int (1/"t" - 1/(2"t" + 1)) "dt" = -int ("d"x)/x`
∴ `int 1/"t" "dt" - 1/2 int 2/(2"t" + 1) "dt" = -int ("d"x)/x`
∴ `log |"t"| - 1/2 log|2"t" + 1|` = − log|x| + log |c|
∴ `log |y/x| - 1/2 log|2(y/x) + 1|` = − log|x| + log |c|
∴ `log |y| - log |x| - 1/2 log|(2y + x)/x|` = − log|x| + log |c|
∴ `1/2 log|y^2| - 1/2 log|(2y + x)/x|` = log |c|
∴ `1/2 log|y^2/((2y + x)/x)|` = log |c|
∴ `1/2 log|(xy^2)/(2y + x)|` = log |c|
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(sin x + cos x) dy + (cos x − sin x) dx = 0
(ey + 1) cos x dx + ey sin x dy = 0
tan y dx + sec2 y tan x dy = 0
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
2xy dx + (x2 + 2y2) dy = 0
3x2 dy = (3xy + y2) dx
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The solution of the differential equation y1 y3 = y22 is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the differential equation:
dr = a r dθ − θ dr
Solve:
(x + y) dy = a2 dx
`xy dy/dx = x^2 + 2y^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: