हिंदी

Solve the Following Differential Equations: D Y D X = Y X { Log Y − Log X + 1 } - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]

उत्तर

We have, 
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log \left( \frac{y}{x} \right) + 1 \right\}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}, \text{ we get }\]
\[v + x\frac{dv}{dx} = v\left\{ \log v + 1 \right\}\]
\[ \Rightarrow x\frac{dv}{dx} = v\log v + v - v\]
\[ \Rightarrow \frac{1}{v\log v}dv = \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int\frac{1}{v\log v}dv = \int\frac{1}{x}dx\]
\[\text{ Putting }\log v = t,\text{ we get }\]
\[dv = vdt\]
\[ \therefore \int\frac{1}{v \times t} \times v dt = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{dt}{t} = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| t \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow t = Cx . . . . . (1) \]
Substituting the value of t in (1), we get 
\[\log v = Cx\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \log \left( \frac{y}{x} \right) = Cx\]
\[\text{ Hence, }\log \left( \frac{y}{x} \right) = Cx\text{ is the required solution .}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 18 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the differential equation:

dr = a r dθ − θ dr


Solve

`dy/dx + 2/ x y = x^2`


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×