Advertisements
Advertisements
प्रश्न
उत्तर
\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]
\[ \Rightarrow \frac{y}{y + 2}dy = \frac{x + 2}{x}dx\]
\[ \Rightarrow \frac{y + 2 - 2}{y + 2}dy = \frac{x + 2}{x}dx\]
\[ \Rightarrow \left( 1 - \frac{2}{y + 2} \right)dy = \left( 1 + \frac{2}{x} \right)dx\]
Integrating both sides, we get
\[\int\left( 1 - \frac{2}{y + 2} \right)dy = \int\left( 1 + \frac{2}{x} \right)dx\]
\[ \Rightarrow y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| + C . . . . . (1)\]
We know that at x = 1, y = - 1 .
Substituting the values of x and y in (1), we get
\[ - 1 - 2\log \left| 1 \right| = 1 + 2\log \left| 1 \right| + C\]
\[ \Rightarrow - 1 = 1 + C\]
\[ \Rightarrow C = - 2\]
Substituting the value of C in (1), we get
\[y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| - 2\]
\[\text{ Hence, }y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| - 2 \text{ is the required solution .} \]
APPEARS IN
संबंधित प्रश्न
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
C' (x) = 2 + 0.15 x ; C(0) = 100
xy dy = (y − 1) (x + 1) dx
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
y ex/y dx = (xex/y + y) dy
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
y2 dx + (x2 − xy + y2) dy = 0
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve
`dy/dx + 2/ x y = x^2`
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: