Advertisements
Advertisements
प्रश्न
y2 dx + (x2 − xy + y2) dy = 0
उत्तर
We have,
\[ y^2 dx + \left( x^2 - xy + y^2 \right) dy = 0\]
\[\frac{dy}{dx} = \frac{- y^2}{x^2 - xy + y^2}\]
This is a homogeneous differential equation.
\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]
\[v + x\frac{dv}{dx} = \frac{- v^2 x^2}{x^2 - v x^2 + v^2 x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v - v^3}{1 - v + v^2}\]
\[ \Rightarrow \frac{1 - v + v^2}{v + v^3}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 + v^2}{v\left( 1 + v^2 \right)}dv - \int\frac{v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{v}dv - \int\frac{1}{1 + v^2}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v \right| - \tan {}^{- 1} \left| v \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{vx}{C} \right| = \tan^{- 1} v\]
\[ \Rightarrow \left| \frac{vx}{C} \right| = e^{\tan^{- 1} v} \]
\[\text{Putting }v = \frac{y}{x},\text{ we get}\]
\[ \Rightarrow \left| y \right| = C e^{\tan^{- 1} v} \]
\[\text{Hence, }\left| y \right| = C e^{\tan^{- 1} v}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
xy dy = (y − 1) (x + 1) dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
dy + (x + 1) (y + 1) dx = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
The solution of the differential equation y1 y3 = y22 is
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The function y = ex is solution ______ of differential equation
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the differential equation `"dy"/"dx" + 2xy` = y