Advertisements
Advertisements
प्रश्न
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
उत्तर
We have,
\[y = e^x \left( A \cos x + B \sin x \right).........(1)\]
Differentiating both sides of (1) with respect to x, we get
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = e^x \left( A \cos x + B \sin x \right) + e^x \left( - A \sin x + B \cos x \right) + e^x \left( - A \sin x + B \cos x \right) + e^x \left( - A \cos x - B \sin x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2 e^x \left( - A \sin x + B \cos x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2 e^x \left( - A \sin x + B \cos x \right) + 2 e^x \left( A \cos x + B \sin x \right) - 2 e^x \left( A \cos x + B \sin x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2\frac{dy}{dx} - 2y ........\left[ \text{Using (1) and (2)}\right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
xy (y + 1) dy = (x2 + 1) dx
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
3x2 dy = (3xy + y2) dx
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve
`dy/dx + 2/ x y = x^2`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?