मराठी

Show that Y = Ex (A Cos X + B Sin X) is the Solution of the Differential Equation D 2 Y D X 2 − 2 D Y D X + 2 Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]

बेरीज

उत्तर

We have,
\[y = e^x \left( A \cos x + B \sin x \right).........(1)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = e^x \left( A \cos x + B \sin x \right) + e^x \left( - A \sin x + B \cos x \right)..........(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = e^x \left( A \cos x + B \sin x \right) + e^x \left( - A \sin x + B \cos x \right) + e^x \left( - A \sin x + B \cos x \right) + e^x \left( - A \cos x - B \sin x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2 e^x \left( - A \sin x + B \cos x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2 e^x \left( - A \sin x + B \cos x \right) + 2 e^x \left( A \cos x + B \sin x \right) - 2 e^x \left( A \cos x + B \sin x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2\frac{dy}{dx} - 2y ........\left[  \text{Using (1) and (2)}\right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 12 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


C' (x) = 2 + 0.15 x ; C(0) = 100


\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(1 − x2) dy + xy dx = xy2 dx


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the differential equation:

`e^(dy/dx) = x`


Solve:

(x + y) dy = a2 dx


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×