मराठी

Show that Y = Aebx is a Solution of the Differential Equation D 2 Y D X 2 = 1 Y ( D Y D X ) 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]
बेरीज

उत्तर

We have, \[y = A e^{Bx}  ................(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = AB e^{Bx}   ................(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = A B^2 e^{Bx} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{\left( AB e^{Bx} \right)^2}{\left( A e^{Bx} \right)}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2 ...........\left[\text{Using }\left( 1 \right)\text{ and }\left( 2 \right) \right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 6 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

(x2 − y2) dx − 2xy dy = 0


(x + 2y) dx − (2x − y) dy = 0


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`dy/dx = x^2 y + y`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×