Advertisements
Advertisements
प्रश्न
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
उत्तर
Let the original count of bacteria be N and the count of bacteria at any time t be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = aP\]
\[ \Rightarrow \frac{dP}{P} = adt\]
\[ \Rightarrow \log\left| P \right| = at + C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0 \]
\[\text{Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| N \right| = C \]
\[\text{Putting }C = \log\left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| P \right| =\text{ at }+ \log\left| N \right|\]
\[ \Rightarrow \log\left| \frac{P}{N} \right| =\text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[\log\left| \frac{3N}{N} \right| = 5a\]
\[ \Rightarrow a = \frac{1}{5}\log\left| 3 \right| = \frac{1}{5} \times 1 . 0986 = 0 . 21972\]
\[\text{ Putting }a = 0 . 21972\text{ in }\left( 2 \right),\text{ we get }\]
\[\log\left| \frac{P}{N} \right| = 0 . 21972t . . . . . \left( 3 \right) \]
\[ \Rightarrow e^{0 . 21972t} = \frac{P}{N} . . . . . \left( 4 \right)\]
\[\text{ Putting }t = 10\text{ in }\left( 4 \right)\text{ to find the bacteria after 10 hours, we get }\]
\[ e^{0 . 21972 \times 10} = \frac{P}{N}\]
\[ \Rightarrow e^{2 . 1972} = \frac{P}{N}\]
\[ \Rightarrow \frac{P}{N} = 9\]
\[ \Rightarrow P = 9N\]
To find the time taken when the number of bacteria becomes 10 times of the number of initial population, we have
\[P = 10N\]
\[ \therefore \log\left| \frac{10N}{N} \right| = \frac{1}{5}t\log 3\]
\[ \Rightarrow t = \frac{5 \log 10}{\log 3}\]
APPEARS IN
संबंधित प्रश्न
Verify that y = cx + 2c2 is a solution of the differential equation
(sin x + cos x) dy + (cos x − sin x) dx = 0
x cos2 y dx = y cos2 x dy
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
`dy/dx + y` = 3
`dy/dx = log x`
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.