Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = y \sin2x, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = \sin 2x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\sin 2x dx\]
\[ \Rightarrow \log \left| y \right| = - \frac{\cos 2x}{2} + C . . . . . (1)\]
\[\text{ Given:} x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[\log \left| 1 \right| = - \frac{1}{2} + C\]
\[ \Rightarrow C = \frac{1}{2}\]
Substituting the value of C in (1), we get
\[\log \left| y \right| = - \frac{\cos 2x}{2} + \frac{1}{2}\]
\[ \Rightarrow \log \left| y \right| = \frac{1 - \cos 2x}{2}\]
\[ \Rightarrow \log \left| y \right| = \sin {}^2 x\]
\[ \Rightarrow y = e^{sin^2} x \]
\[\text{ Hence, }y = e^{sin^2} x\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
(sin x + cos x) dy + (cos x − sin x) dx = 0
xy (y + 1) dy = (x2 + 1) dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve:
(x + y) dy = a2 dx
Solve the differential equation xdx + 2ydy = 0
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
Solve the differential equation
`x + y dy/dx` = x2 + y2