Advertisements
Advertisements
प्रश्न
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
पर्याय
log (log x)
ex
log x
x
उत्तर
log x
We have,
(x log x)
\[\frac{dy}{dx} + y = 2 \log x\]
Dividing both sides by x log x, we get
\[\frac{dy}{dx} + \frac{y}{x\log x} = 2\frac{\log x}{x\log x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x\log x} = \frac{2}{x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x\log x} \right)y = \frac{2}{x}\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \frac{1}{x\log x}\]
\[Q = \frac{2}{x}\]
Now,
\[I . F . = e^{\int P\ dx} = e^{\int\frac{1}{x \log x}dx} \]
\[ = e^{log\left( \log x \right)} \]
\[ = \log x\]
APPEARS IN
संबंधित प्रश्न
xy dy = (y − 1) (x + 1) dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
(y2 − 2xy) dx = (x2 − 2xy) dy
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation y1 y3 = y22 is
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
`xy dy/dx = x^2 + 2y^2`
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx