मराठी

The Solution of the Differential Equation D Y D X = a X + G B Y + F Represents a Circle When - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when

पर्याय

  • a = b

  • a = −b

  • a = −2b

  • a = 2b

MCQ

उत्तर

a = −b

 

We have,
\[\frac{dy}{dx} = \frac{ax + g}{by + f}\]
\[ \Rightarrow \left( by + f \right)dy = \left( ax + g \right)dx\]
Integrating both sides, we get
\[\int\left( by + f \right)dy = \int\left( ax + g \right)dx\]
\[ \Rightarrow b\frac{y^2}{2} + fy = a\frac{x^2}{2} + gx + C\]
\[ \Rightarrow b\frac{y^2}{2} + fy - a\frac{x^2}{2} - gx = C\]
\[ \Rightarrow b y^2 + 2fy - a x^2 - 2gx - 2C = 0\]
The above equation represents a circle . 
\[\text{ Therefore, the coffecients of }x^2\text{ and }y^2\text{ must be equal . }\]
\[ i . e . - a = b\]
\[ \Rightarrow a = - b\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 10 | पृष्ठ १४०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


The differential equation satisfied by ax2 + by2 = 1 is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation:

`e^(dy/dx) = x`


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×