Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
पर्याय
a = b
a = −b
a = −2b
a = 2b
उत्तर
a = −b
We have,
\[\frac{dy}{dx} = \frac{ax + g}{by + f}\]
\[ \Rightarrow \left( by + f \right)dy = \left( ax + g \right)dx\]
Integrating both sides, we get
\[\int\left( by + f \right)dy = \int\left( ax + g \right)dx\]
\[ \Rightarrow b\frac{y^2}{2} + fy = a\frac{x^2}{2} + gx + C\]
\[ \Rightarrow b\frac{y^2}{2} + fy - a\frac{x^2}{2} - gx = C\]
\[ \Rightarrow b y^2 + 2fy - a x^2 - 2gx - 2C = 0\]
The above equation represents a circle .
\[\text{ Therefore, the coffecients of }x^2\text{ and }y^2\text{ must be equal . }\]
\[ i . e . - a = b\]
\[ \Rightarrow a = - b\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = cx + 2c2 is a solution of the differential equation
C' (x) = 2 + 0.15 x ; C(0) = 100
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
The differential equation satisfied by ax2 + by2 = 1 is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the differential equation:
`e^(dy/dx) = x`
x2y dx – (x3 + y3) dy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0