Advertisements
Advertisements
प्रश्न
उत्तर
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\left( x + y + 1 \right)}\]
\[\text{ Let }x + y + 1 = v\]
\[ \therefore 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = \frac{1}{v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{v} + 1\]
\[ \Rightarrow \frac{v}{v + 1}dv = dx\]
Integrating both sides, we get
\[\int\frac{v}{v + 1}dv = \int dx\]
\[ \Rightarrow \int\frac{v + 1 - 1}{v + 1}dv = \int dx\]
\[ \Rightarrow \int\left( 1 - \frac{1}{v + 1} \right)dv = \int dx\]
\[ \Rightarrow v - \log\left| v + 1 \right| = x + K\]
\[ \Rightarrow x + y + 1 - \log\left| x + y + 1 + 1 \right| = x + K\]
\[ \Rightarrow y - \log\left| x + y + 2 \right| = K - 1\]
\[ \Rightarrow y - \log\left| x + y + 2 \right| = C_1 ...........\left( C_1 = K - 1 \right)\]
\[ \Rightarrow y - C_1 = \log\left| x + y + 2 \right|\]
\[ \Rightarrow e^{y - C_1} = x + y + 2\]
\[ \Rightarrow \frac{e^y}{e^{C_1}} = x + y + 2\]
\[ \Rightarrow e^{- C_1} e^y = x + y + 2\]
\[ \Rightarrow C e^y = x + y + 2 .............\left( C = e^{- C_1} \right)\]
\[ \Rightarrow x = C e^y - y - 2\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
`dy/dx = log x`
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation
`y (dy)/(dx) + x` = 0