Advertisements
Advertisements
प्रश्न
Solve the differential equation
`y (dy)/(dx) + x` = 0
उत्तर
Given differential equation is `y (dy)/(dx) + x` = 0
⇒ `y (dy)/(dx)` = – x
⇒ y dy = – x dx
On integrating both sides, we get
`int y dy = int - x dx`
⇒ `y^2/2 = (-x^2)/2 + C`
⇒ y2 + x2 = 2C
⇒ x2 + y2 = C
Where C = 2C is the required solution of differential equation.
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Show that y = AeBx is a solution of the differential equation
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
(sin x + cos x) dy + (cos x − sin x) dx = 0
C' (x) = 2 + 0.15 x ; C(0) = 100
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
(x + y) (dx − dy) = dx + dy
x2 dy + y (x + y) dx = 0
y ex/y dx = (xex/y + y) dy
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
3x2 dy = (3xy + y2) dx
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
`dy/dx + 2xy = x`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: