Advertisements
Advertisements
प्रश्न
Show that function f(x) = tan x is increasing in
उत्तर
Given, f(x) = tan x
f'(x) = sec2x
But sec2x > 0, ∀x∈ (0, π/2)
Hence f(x) = tan x is strictly increasing in (0, π/2).
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Show that the function
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Show that the function given by f(x) = sin x is
- strictly increasing in
- strictly decreasing in
- neither increasing nor decreasing in (0, π)
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Prove that the function f given by f(x) = log sin x is strictly increasing on
Prove that the function f given by f(x) = log cos x is strictly decreasing on
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
The interval in which y = x2 e–x is increasing is ______.
Find the intervals in which the function f given by
Water is dripping out from a conical funnel of semi-verticle angle
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x
What are the values of 'a' for which f(x) = ax is increasing on R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Let
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
The function
The function
Function f(x) = ax is increasing on R, if
The function f(x) = x9 + 3x7 + 64 is increasing on
Find the intervals in which the function
(a) strictly increasing
(b) strictly decreasing
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the values of x for which f(x) =
Show that y =
Prove that y =
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
State whether the following statement is True or False:
The function f(x) =
Show that function f(x) =
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
State whether the following statement is True or False:
The function f(x) =
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) =
∴ f'(x) = 6
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1:
∴ x ∈
Case 2:
∴ x ∈
∴ f(x) is decreasing function if and only if x ∈
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
f(x) =
For every value of x, the function f(x) =
Determine for which values of x, the function y =
Show that for a ≥ 1, f(x) =
The function f(x) = tanx – x ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
Let
In
The function which is neither decreasing nor increasing in
Which of the following graph represent the strictly increasing function.
If f(x) =
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
If f(x) = x + cosx – a then ______.
Let f(x) =