рдорд░рд╛рдареА
рдорд╣рд╛рд░рд╛рд╖реНрдЯреНрд░ рд░рд╛рдЬреНрдп рд╢рд┐рдХреНрд╖рдг рдордВрдбрд│рдПрдЪрдПрд╕рд╕реА рд╡рд┐рдЬреНрдЮрд╛рди (рд╕рд╛рдорд╛рдиреНрдп) рдЗрдпрддреНрддрд╛ резреи рд╡реА

Find the values of x, for which the function f(x) = x3 + 12x2 + 36ЁЭСе + 6 is monotonically decreasing - Mathematics and Statistics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Find the values of x, for which the function f(x) = x3 + 12x2 + 36ЁЭСе + 6 is monotonically decreasing

рдмреЗрд░реАрдЬ

рдЙрддреНрддрд░

f(x) = x3 + 12x2 + 36ЁЭСе + 6

∴ f′(x) = 3x2 + 24x + 36

= 3(x2 + 8x + 12)

= 3(x + 2)(x + 6)

f(x) is monotonically decreasing, if f′(x) < 0

∴ 3(x + 2)(x + 6) < 0

∴ (x + 2)(x + 6) < 0

ab < 0 ⇔ a > 0 and b < 0 or a < 0 and b > 0

∴ Either x + 2 > 0 and x + 6 < 0

or

x + 2 < 0 and x + 6 > 0

Case I: x + 2 > 0 and x + 6 < 0

∴ x > – 2 and x < – 6,

which is not possible.

Case II: x + 2 < 0 and x + 6 > 0

∴ x < – 2 and x > – 6

Thus, f(x) is monotonically decreasing for x ∈ (– 6, – 2).

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 2.2: Applications of Derivatives - Short Answers II

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [3]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


The interval in which y = x2 e–x is increasing is ______.


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


Every invertible function is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Function f(x) = ax is increasing on R, if


Let ╧Х(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ╧Х (x)


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Find `dy/dx,if e^x+e^y=e^(x-y)`


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Show that f(x) = x – cos x is increasing for all x.


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


The function f(x) = x3 - 3x is ______.


The function f(x) = sin x + 2x is ______ 


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


Which of the following functions is decreasing on `(0, pi/2)`?


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f (x) = 2 – 3 x is ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


y = log x satisfies for x > 1, the inequality ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


A function f is said to be increasing at a point c if ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×