Advertisements
Advertisements
प्रश्न
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
उत्तर
\[f\left( x \right) = \tan x\]
\[f'\left( x \right) = \sec^2 x\]
\[\text { Here },\]
\[\frac{- \pi}{2} < x < \frac{\pi}{2}\]
\[ \Rightarrow \sec x > 0 \left[ \because Sec \text { function is positive in first and fourth quadrant } \right]\]
\[ \Rightarrow \sec^2 x > 0\]
\[ \Rightarrow f'\left( x \right) > 0, \forall x \in \left( \frac{- \pi}{2}, \frac{\pi}{2} \right)\]
\[\text { So },f(x)\text { is increasing on } \left( \frac{- \pi}{2}, \frac{\pi}{2} \right) .\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Show that f(x) = x – cos x is increasing for all x.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f(x) = tan-1 x is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
A function f is said to be increasing at a point c if ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.