Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[\ f\left( x \right) = 5 x^\frac{3}{2} - 3 x^\frac{5}{2} , x > 0\]
\[f'\left( x \right) = \frac{15}{2} x^\frac{1}{2} - \frac{15}{2} x^\frac{3}{2} \]
\[ = \frac{15}{2} x^\frac{1}{2} \left( 1 - x \right)\]
\[\text { Here }, 0, 1 \text { are the roots } .\]
\[\text { The possible intervals are }\left( - \infty , 0 \right),\left( 0, 1 \right)\text { and }\left( 1, \infty \right)...(1)\]
\[\text { For f(x) to be increasing, we must have}\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{15}{2} x^\frac{1}{2} \left( 1 - x \right) > 0\]
\[ \Rightarrow x \in \left( 0, 1 \right)\]
\[\text { So,f(x)is increasing on } \left( 0, 1 \right) . \]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \frac{15}{2} x^\frac{1}{2} \left( 1 - x \right) < 0\]
\[ \Rightarrow x \in \left( 1, \infty \right)\]
\[\text { So,f(x)is decreasing on }\left( 1, \infty \right).\]
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = x3 − 27x + 5 is monotonically increasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Every invertible function is
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Function f(x) = ax is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Show that f(x) = x – cos x is increasing for all x.
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
The function f(x) = sin x + 2x is ______
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.